Saturday, September 19, 2015

SHA-256 (SHA2) Hash Caculator

SHA-256 (SHA2) Hash Caculator

SHA-2 is a set of cryptographic hash functions designed by the NSA (U.S. National Security Agency). SHA stands for Secure Hash Algorithm. Cryptographic hash functions are mathematical operations run on digital data; by comparing the computed "hash" (the execution of the algorithm) to a known and expected hash value, a person can determine the data's integrity. For example, computing the hash of a downloaded file and comparing the result to a previously published hash result can show whether the download has been modified or tampered with. A key aspect of cryptographic hash functions is their collision resistance: nobody should be able to find two different input values that result in the same hash output. SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. SHA-256 and SHA-512 are novel hash functions computed with 32-bit and 64-bit words, respectively. 


They use different shift amounts and additive constants, but their structures are otherwise virtually identical, differing only in the number of rounds. SHA-224 and SHA-384 are simply truncated versions of the first two, computed with different initial values. SHA-512/224 and SHA-512/256 are also truncated versions of SHA-512, but the initial values are generated using the method described in FIPS PUB 180-4. SHA-2 was published in 2001 by the NIST as a U.S. federal standard (FIPS). The SHA-2 family of algorithms are patented in US 6829355. The United States has released the patent under a royalty-free license.


In 2005, an algorithm emerged for finding SHA-1 collisions in about 2000-times fewer steps than was previously thought possible. Although (as of 2015) no example of a SHA-1 collision has been published yet, the security margin left by SHA-1 is weaker than intended, and its use is therefore no longer recommended for applications that depend on collision resistance, such as digital signatures. Although SHA-2 bears some similarity to the SHA-1 algorithm, these attacks have not been successfully extended to SHA-2. Currently, the best public attacks break preimage resistance 52 rounds of SHA-256 or 57 rounds of SHA-512, and collision resistance for 46 rounds of SHA-256, as shown in the Cryptanalysis and validation section below



Thank you for patronizing Design Devta. I am sure your visit to us must be quite satisfying and in line with your expectations from us. Just in case, it's not as you expected from us or if you are facing any problem, kindly forward your feedback's directly to us by leave a Comment below or using our Contact form. And, get assured response from my side. Your feedback's and suggestions are extremely valuable to us. This Post is written by Harman Singh Hira. There is no any source so Copying or using this post for your own site is not allowed. If anyone do so get ready for facing DMCA. Please, if you like this post then share on your social networking sites. Assuring you of our best service always.

No comments:

Post a Comment